Microbiological Synthesis of Optically Active (2R,3S)-2,3-Deuteriocyclohexan-1-ones and (2R,3S)-2-Methyl-3-deuteriocyclohexan-1-one. Enantiospecific *Anti*-Addition of Hydrogen to the Double Bond of Cyclohex-2-en-1-ones.

Gérard DAUPHIN, Jean-Gabriel GOURCY and Henri VESCHAMBRE

Laboratoire de Chimie Organique Biologique, URA 485 du CNRS 63177 AUBIERE Cedex, France

(Received 23 March 1992)

Abstract : Addition of hydrogen to the double bond of cyclohexenones during microbiological reduction by *Beauveria sulfurescens* gives the *trans* product in high yield (90%) resulting from *anti*-addition to the *si* face on C-2 and the *re* face on C-3.

We have shown that α,β -ethylenic ketones are reduced to saturated ketones by *Beauveria sulfurescens*, and that with an α -alkyl substituent the saturated ketone is optically pure^{1,2}. However, cyclic α,β -unsaturated ketones having α and β -alkyl substituents are not reduced with *B. sulfurescens*. Replacement of the α - or β alkyl substituent by deuterium in cyclohex-2-en-1-one leads to optically active 2- or 3-deuteriocyclohexanones. The optical activity is due solely to the presence of the deuterium atom. By comparison with previous work of Djerassi^{9a}, and using circular dichroism, we have assigned absolute configuration (2R) and (3S) to the 2deuterio and 3-deuteriocyclohexan-1-ones obtained^{3,4}. These assignments were confirmed by Djerassi^{9b} from chemical synthesis. The absolute configurations of the asymmetric carbon created in the two different experiments, *i.e.* carbon 2R (α) and carbon 3S (β), implies that the reduction of α,β -unsaturated cyclic ketones with *B. sulfurescens* corresponds to an *anti*-addition of hydrogen to the double bond^{3,4}.

To test this hypothesis and in order to obtain additional experimental support for this *anti*-addition mechanism we have studied the microbiological reduction of cyclohexenones bearing deuterium atoms in both positions α and β : 2,3-dideuteriocyclohex-2-en-1-one and 2,3,4,4,6,6-hexadeuteriocyclohex-2-en-1-one by *B*. *sulfurescens*. In order to determine also if the *anti*-addition mechanism occurs during the microbiological reduction of the double bond of 2-substitued cyclohex-2-en-1-one, we have performed the same experiment on 2-methyl-3-deuteriocyclohex-2-en-1-one.

G. DAUPHIN et al.

The synthesis of 2,3-dideuteriocyclohex-2-en-1-one¹³ 4 (Scheme I) started with cyclohexane-1,3-dione 1 which was treated with MeOH/TsOH to give enol ether 2. Reduction of 2 by LiAlD₄ gave 3-deuteriocyclohex-2-en-1-one 3 as described by Gannon and House⁵. The 2,3-dideuteriocyclohex-2-en-1-one 4 was obtained from 3 according to the method of Guaciaro⁶.

SCHEME I

The microbiological reduction of 4 by *B. sulfurescens* leads to optically active 2,3-dideuteriocyclohexan-1-one¹⁴ 5 ([α] = + 3.2). ¹H, ²H and ¹³C NMR allows the determination of the stucture of 5 . The ²H NMR spectrum of 5 in C₆H₆ consisted of resonances at δ 1.92 and 1.28 for ²H-2 and ²H-3, respectively, the width at half-height being 2.8 Hz after proton irradiation. The absolute configuration of 5 is proved by the value of the coupling constant J_{H2-H3}= 7 Hz which corresponds to the conformational equilibrium between the two chair forms of 4, H-2 and H-3 being *trans* and, respectively, in axial-axial or equatorial-equatorial positions (50/50). If H-2 and H-3 were *cis* to each other the calculated value for J_{H2-H3} would be of 3 Hz. It follows, then, that the absolute configuration of 5 is (2R,3S). This result confirms our previous work^{3,4}, which showed that the reduction of cyclohex-2-en-1-ones with *B. sulfurescens* gives mainly the *trans* product resulting from *anti*addition of hydrogen to the double bond.

Additional support for this mechanism comes from the microbiological reduction of 2,3,4,4,6,6-hexadeuteriocyclohex-2-en-1-one¹³ $\mathbf{6}$ which was synthetized from enol ether $\mathbf{2}$ according the method of Lambert and Clikeman⁷ (Scheme 2).

SCHEME II

Optically active 2,3,4,4,6,6-hexadeuteriocyclohexan-1-one¹⁴ 7 ($[\alpha] = +3.8$) is obtained by microbial reduction of 6 by *B. sulfurescens*. The very simple ¹H NMR spectrum of 7 shows a doublet (J_{H2-H3}= 7 Hz) for H-2 at 1.97 ppm (characteristic of *trans* coupling H-2 - H-3).

Finally we have studied the microbial reduction of 2-methyl-3-deuteriocyclohex-2-en-1-one¹³ 10 which was prepared from 2-methylcyclohexane-1,3-dione 8. Treatment by MeOH/TsOH gives enol ether 9 which was reduced⁵ by LiAlD₄ to 10 (Scheme III).

SCHEME III

Microbiological reduction of **10** gives a 90/10 mixture of (2R,3S)- and (2R,3R)-2-methyl-3deuteriocyclohexan-1-one¹⁴ **11** ([α] = -8). This ratio was determined from ¹H and ²H NMR spectra. The ¹H NMR spectrum of **11** shows two doublets (J = 7 Hz) for the methyl, at 0.85 ppm (90.5%) and 0.80 ppm (9.5%) in CCl₄-C₆D₆ (9/1) and a signal at 1.22 ppm corresponding to H-3. The chemical shift of H-3 is characteristic of a hydrogen *cis* to a methyl group at C-2. ²H NMR in C₆H₆ shows two singlets at $\delta = 1.55$ (91%) and 0.93 (9%) characteristic, respectively, of *trans* and *cis* positions of ²H-3 to the methyl group in C-2 as indicated by Campbell *et al.* for the 2-methyl-3-deuteriocyclopentan-1-one⁸. The corresponding NMR spectra of racemic 2-methyl-3-deuteriocyclohexan-1-one¹⁴ show 50/50 signals for the methyl and for ²H-3. These results show that the addition of hydrogen to the double bond of cyclohex-2-en-1-ones, during microbiological reduction by *B. sulfurescens*, occurs in an *anti* mode in high yield, through the *si* face on C-2 and the *re* face on C-3. The presence of a product in which the ²H-3 and the methyl group in C-2 are in *cis* position (10%) can be explained by a subsequent non-enzymatic epimerisation on C-2 as it is the case for 2-methylcyclohexan-1-one¹⁰ (ee ≈ 90%).

REFERENCES AND NOTES

- 1) A. Kergomard, M.F Renard et H. Veschambre, Tetrahedron Lett. 1978, 52, 5197.
- 2) A. Fauve, M.F. Renard and H. Veschambre, J. Org. Chem. 1987, 52, 4893.
- 3) G. Dauphin, J.C. Gramain, A. Kergomard, M.F. Renard and H. Veschambre, *Tetrahedron Lett.*, 1980, 21, 4275

4) - G. Dauphin, J.C. Gramain, A. Kergomard, M.F. Renard and H. Veschambre, J. Chem. Soc., Chem. Comm. 1980, 318.

- 5) W.F. Gannon and H.O. House, Org. Synth., 1960, 40, 14
- 6) M. A. Guaciaro, P.M. Wovkulich and A.B. Smith, Tetrahedron Lett., 1978, 4661.
- 7) J.B. Lambert and R.R. Clikeman, J. Am. Chem. Soc., 1976, 98, 4203.
- 8) R.E. Campbell, Jr., C.F. Lochow, K.P. Vora and R.G. Miller, J. Am. Chem. Soc., 1980, 102, 5824.
- 9) a) C. Djerassi, C.L. Van Antwerp and P. Sundararaman, Tetrahedron Lett., 1978, 535.
 - b) P. Sundararaman, G. Barth and C. Djerassi, J. Org. Chem., 1980, 45, 5231.

10) - Enantiomeric excess of 2-methylcyclohexan-1-one¹ obtained by microbiological reduction is $\approx 90\%$ (comparison with litterature data¹¹).

11) - J. Barry, A. Horeau et H.B. Kagan, Bull. Soc. Chim., 1970, 989.

12) - All compounds were characterized by NMR spectroscopy ¹H, ²H and ¹³C NMR at respectively 400.13 MHz, 61.4 MHz and 100.13 MHz. For ²H NMR, $C_6D_6\delta = 7.15$.

13) - 2,3-dideuteriocyclohex-2-en-1-one 4 : colorless liquid, NMR ¹H (CDCl₃) δ : 1.7 to 2.6 (m, 6H, ring methylene).

2,3,4,4,6,6,-hexadeuteriocyclohex-2-en-1-one 6 : colorless liquid, NMR ¹H (CDCl₃) δ : 1.92 (s, 2H, methylene)

2-methyl-3-deuteriocyclohex-2-en-1-one 10, colorless liquid, NMR ¹H (CDCl₃) δ : 1.8 (s, 3H, methyl); 1.8 to 2.6 (m, 6H, ring methylene).

14) - (+)-(2R,3S)-2,3-dideuteriocyclohexan-1-one 5, colorless liquid, $[\alpha]_J 2^{5^\circ} = + 3.2$ (CHCl₃, c = 0.1); NMR ¹H (C₆D₆) δ : 1.99 (t, 2H-6); 1.96 (d , J = 7 Hz, W_{1/2}= 5 Hz, H-2); 1.37 (m, 2H-5); 1.34 (m, H-3); 1.20 (m, 2H-4). NMR ²H (C₆H₆/C₆D₆, 90/10), δ : 1.92 (s, 2H-2); 1.28 (s, 2H-3). NMR ¹³C (CDCl₃), δ : 211.9 (C-1); 41.5 (t, ¹J ¹³C-²H = 19.5 Hz, C-2) ; 26.7 (t, ¹J ¹³C-²H = 19.5 Hz, C-3); 24.8 (C-4); 27.02 (C-5); 42.0 (C-6).

- (+)-(2R,3S)-2,3,4,4,6,6-hexadeuteriocyclohexan-1-one 7, colorless liquid, $[\alpha]_J ^{25^\circ} = + 3.8$ (CHCl₃, c = 0.12); NMR ¹H (C₆D₆), δ : 1.97 (d, J = 7 Hz, W_{1/2}= 5 Hz, H-2); 1.35 (s, W_{1/2}= 12 Hz, 2H-5, H-3). NMR ²H (C₆H₆/C₆D₆, 90/10), δ : 1.92 (s, ²H-2, 2 ²H-6); 1.32 (s, ²H-3), 1.12 (s, 2 ²H-4).

- (±)-2-methyl-3-deuteriocyclohexan-1-one, NMR ¹H (CCl₄/C₆D₆ 90/10), δ : 2.15 - 1.22 (m, 2x8H), 0.85 and 0.80 (d, J = 7 Hz, CH₃). NMR ²H (C₆H₆/C₆D₆, 90/10), δ : 1.55 (d, J = 1.2 Hz), 0.93 (pseudo q, J = 1.6 Hz), ²H-3 (we obtain singlets with proton irradiation).

- (-)-(2R,3S)-2-methyl-3-deuteriocyclohexan-1-one 11, colorless liquid; $[\alpha]_J 2^{5^\circ} = -8$ (CHCl₃, c = 0.2); NMR ¹H (CCl₄/C₆D₆ 90/10), δ : 2.15 (m, 3H, H-2, 2H-6), 1.90 (m, 1H), 1.69 (m, 1H), 1.49 (m, 2H), 1.22 (m,1H, H-3); 0.85 (d, J = 7 Hz, CH₃, 90.5 %), 0.80 (d, J = 7 Hz, CH₃, 9.5 %). NMR ²H (C₆H₆/C₆D₆, 90/10), δ : 1.55 (d, J = 1.2 Hz, 91 %)), 0.93 (pseudo q, J = 1.6 Hz, 9 %), ²H-3 (we obtain singlets with proton irradiation).